Regra de Simpson
Na análise numérica, a regra ou método de Simpson (chamada así na honra de Thomas Simpson) é un método de integración numérica que se utiliza para obter a aproximación da integral:
- .
Derivación da regra de Simpson
editarConsideramos o polinomio interpolante de orde dous , que se aproxima a función integrando entre os nodos x0 = a, x1 = b e m = (a+b)/2. A expresión dese polinomio interpolante, expresado a través da Interpolación polinómica de Lagrange é:
Así, a integral buscada pódese aproximar como:
Erro
editarO erro de aproximar a integral mediante o método de Simpson é
onde e .
Regra de Simpson composta
editarNo caso de que o intervalo [a,b] non sexa o suficientemente pequeno, o erro ao calcular a integral pode ser moi grande. Para iso, recórrese á fórmula composta de Simpson. Dividiremos o intervalo [a,b] en n subintervalos iguais, de xeito que , onde para .
Aplicando a Regra de Simpson a cada subintervalo, temos:
Sumando as integrais de todos os subintervalos, chegamos a que:
O máximo erro vén dado pola expresión